The correct option is
D ΔAMN
In the given figure,
In ΔBAC
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
∠B =
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
70∘, ∠C =
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
20∘,
∠BAC =
180∘−(70∘+20∘)=90∘
∴
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
ΔBAC is a right angled triangle.
In ΔAMB
∠AMB =
90∘
∴
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
ΔAMB is a right angled triangle.
In ΔANC non of the angle is
90∘.
So, ΔANC is not a right angled triangle.
In ΔAMN
∠AMN =
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
90∘,
∴
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
ΔAMN is a right angled triangle.
Hence, ΔBAC, ΔAMB, and ΔAMN are right angled triangles.
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->