1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VII
Mathematics
Angle Sum Property
In the given ...
Question
In the given figure
P
Q
=
P
R
, then prove that
P
S
>
P
Q
Open in App
Solution
∠
1
=
∠
2
(
g
i
v
e
n
)
P
R
>
P
Q
(
g
i
v
e
n
)
I
n
Δ
P
Q
R
P
R
>
P
Q
(
g
i
v
e
n
)
⇒
∠
P
Q
R
>
∠
P
R
Q
+
∠
R
P
S
(
sin
c
e
∠
Q
P
S
=
∠
R
P
S
)
⇒
−
(
∠
P
Q
R
+
∠
Q
P
S
)
<
−
(
∠
P
R
Q
+
∠
R
P
S
)
⇒
180
−
(
∠
P
Q
R
+
∠
Q
P
S
)
<
180
−
(
∠
P
R
Q
+
∠
R
P
S
)
⇒
180
−
(
∠
P
Q
S
+
∠
Q
P
S
)
<
180
−
(
∠
P
R
S
+
∠
R
P
S
)
⇒
∠
P
S
Q
<
∠
P
S
R
(by angle sum property)
⇒
∠
P
S
R
>
∠
P
S
Q
Suggest Corrections
0
Similar questions
Q.
In the given figure, PR > PQ and PS bisects ∠QPR. Prove that ∠PSR >∠PSQ.