In ∆ABC, if (a+b+c)(a-b+c)=3ac, then
∠B=60°
∠B=30°
∠C=60°
∠A+∠C=90°
Explanation for the correct Option:
Determining the angle In ∆ABC
⇒(a+b+c)(a-b+c)=3ac[Given]⇒((a+c)+b)((a+c)–b)=3ac⇒(a+c)2–b2=3ac⇒a2+c2+2ac–b2–3ac=0⇒a2+c2–b2=ac…(i)
We know the cosine rule in ∆ABC, having sides a,b,c
cosB=(a2+c2–b2)2ac
Putting (i) in cosB we get
⇒cosB=ac2ac⇒cosB=12⇒cosB=cos60°⇒∠B=60°
Hence, option A is the correct answer.
In △ ABC, if (a+b+c)(a-b+c)=3ac, then [AMU 1996]