In △ABC, if P,Q,R divides BC,CA,AB in 1:4,3:2,3:7 respectively and S divides AB in 1:3 then ∣∣¯¯¯¯¯¯¯¯AP+¯¯¯¯¯¯¯¯¯BQ+¯¯¯¯¯¯¯¯CR∣∣∣∣¯¯¯¯¯¯¯¯CS∣∣
In the given figure, the incircle of △ABC touches the sides AB, BC and CA at the points P, Q, R respectively. Show that AP+BQ+CR=BP+CQ+AR =12 (Perimeter of △ABC) [3 MARKS]