In △ ABC, if sin2A2,sin2C2 be in H. P. then a, b, c will be in
A
A. P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
G. P.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
H. P.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is CH. P. 1sin2C2−1sin2B2=1sin2C2areinA.P. ⇒1sin2C2−1sin2B2=1sin2B2−1sin2A2 ⇒ab(s−a)(s−b)−ac(s−a)(s−c) =ac(s−a)(s−c)−bc(s−b)(s−c) ⇒(as−a)(b(s−c)−c(s−b)(s−b)(s−c))=(cs−c)(a(s−b)−b(s−a)(s−a)(s−b)) ⇒ abs - abc - acs + abc = acs - abc - bcs + abc ⇒ ab - ac = ac - bc ⇒ ab + bc = 2ac or, 1c+1a=2b,i.e.,a,b,careinH.P. Note : Students should remember this question as a fact.