wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ABC,a3cos(BC)=

A
abc
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2abc
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3abc
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 3abc
a3cos(BC)
=a3cos(BC)+b3cos(CA)+c3cos(AB)
Using sine rule, asinA=bsinB=csinC=k
we know that A+B+C=π
a=ksinA=ksin(π(B+C))=ksin(B+C)
b=ksinB=ksin(π(C+A))=ksin(C+A)
c=ksinC=ksin(π(A+B))=ksin(A+B)
L.H.S=a2ksin(B+C)cos(BC)+b2ksin(C+A)cos(CA)+c2ksin(A+B)cos(AB)
=k2[a22sin(B+C)cos(BC)+b22sin(C+A)cos(CA)+c22sin(A+B)cos(AB)]
=k2[a2(sin2B+sin2C)+b2(sin2C+sin2A)+c2(sin2A+sin2B)]
=k2[a2(2sinBcosB+2sinCcosC)+b2(2sinCcosC+2sinAcosA)+c2(2sinAcosA+2sinBcosB)]
=a2(ksinBcosB+ksinCcosC)+b2(ksinCcosC+ksinAcosA)+c2(ksinAcosA+ksinBcosB)
We know that a=ksinA,b=ksinB,c=ksinC we have
=a2(bcosB+ccosC)+b2(ccosC+acosA)+c2(acosA+bcosB)
=ab(acosB+bcosA)+bc(bcosC+ccosB)+ca(ccosA+acosC)
Using projection rule, we have c=acosB+bcosA,a=bcosC+ccosB,b=ccosA+acosC
=abc+bca+cab=3abc

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon