The correct option is
C 3abc∑a3cos(B−C)
=a3cos(B−C)+b3cos(C−A)+c3cos(A−B)
Using sine rule, asinA=bsinB=csinC=k
we know that A+B+C=π
⇒a=ksinA=ksin(π−(B+C))=ksin(B+C)
⇒b=ksinB=ksin(π−(C+A))=ksin(C+A)
⇒c=ksinC=ksin(π−(A+B))=ksin(A+B)
L.H.S=a2ksin(B+C)cos(B−C)+b2ksin(C+A)cos(C−A)+c2ksin(A+B)cos(A−B)
=k2[a22sin(B+C)cos(B−C)+b22sin(C+A)cos(C−A)+c22sin(A+B)cos(A−B)]
=k2[a2(sin2B+sin2C)+b2(sin2C+sin2A)+c2(sin2A+sin2B)]
=k2[a2(2sinBcosB+2sinCcosC)+b2(2sinCcosC+2sinAcosA)+c2(2sinAcosA+2sinBcosB)]
=a2(ksinBcosB+ksinCcosC)+b2(ksinCcosC+ksinAcosA)+c2(ksinAcosA+ksinBcosB)
We know that a=ksinA,b=ksinB,c=ksinC we have
=a2(bcosB+ccosC)+b2(ccosC+acosA)+c2(acosA+bcosB)
=ab(acosB+bcosA)+bc(bcosC+ccosB)+ca(ccosA+acosC)
Using projection rule, we have c=acosB+bcosA,a=bcosC+ccosB,b=ccosA+acosC
=abc+bca+cab=3abc