First, we need to find the indefinite integral.
∫10xex(1+x)2dx
ApplyIntegrationByParts:u=xex,v′=1(1+x)2
=xex(−11+x)−∫(ex+exx)(−11+x)dx
=−exxx+1−∫−exx+exx+1dx
Now, we will evalaute the ∫−exx+exx+1dx
∫−exx+exx+1dx=−ex
So,
=−exxx+1−(−ex)
=−exxx+1+ex+C
Now, we will evalaute the defnite integral
∫10xex(1+x)2dx=−e2+e−1
=12(e−2)