∫10e√xdx=
−2
e2−e
2
1
Let x=t2
⇒dx=2tdt
Thus, integration becomes
2∫10tetdt
=2[(t−1)et]10=2
∫10xex dx=
Consider the integrals I1=∫10e−xcos2xdx,I2=∫10e−x2cos2xdx,I3=∫10e−xdx and I4=∫10e−(1/2)x2dx. The greatest of these integrals is