∫10[xex+sin(πx4)]dx=[xex]10−∫101.exdx−[(cos(πx4)(π4))]10=(e−0)−[ex]10−(4π)((1√2)−1)=e−(e−1)−(2√2π)+(4π)=(4−2√2π)+1
Evaluate the definite integrals. ∫10(xex+sinπ.x4)dx