Putting x=tanθ ⇒dx=sec2θdθ
=∫π40tan−1(2tanθ1−tan2θ)sec2θdθ
=∫π40tan−1(tan2θ)sec2θdθ
=∫π402θsec2θdθ
=2∫π40θsec2θdθ
=2⎡⎢⎣(θtanθ)π40−∫π401.tanθdθ⎤⎥⎦
=2[θtanθ−ln|secθ|]π40
=2[θtanθ+ln|cosθ|]π40
=2[(π4+ln1√2)−0]
=2[π4+ln1√2]
=2π4+2ln(2)−12
=π2+2×−12ln2
=π2−ln2