Apply u-substitution u=
x2=∫u(25−u)722du
=12⋅∫u(25−u)72du
Apply integration by parts,
u=u,v'=(25−u)72
=12⎛⎜⎝−29u(25−u)92−∫−29(25−u)92du⎞⎟⎠
Substitute the value of u
12⎛⎜⎝−29x2(25−x2)92−499(25−x2)112⎞⎟⎠
Compute the boundaries:
∫50x3(25−x2)72dx=0−(−9765625099)=9765625099