wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π20(11+cotx)dx

Open in App
Solution

Consider the given integral.

I=π20(11+cotx)dx

I=π20⎜ ⎜11+cosxsinx⎟ ⎟dx

I=π20(sinxsinx+cosx)dx …….. (1)

We know that

baf(x)dx=baf(a+bx)dx

Therefore,

I=π20⎜ ⎜ ⎜ ⎜sin(π2x)sin(π2x)+cos(π2x)⎟ ⎟ ⎟ ⎟dx

I=π20(cosxcosx+sinx)dx …........(2)

On adding equation (1) and (2), we get

2I=π20(cosx+sinxcosx+sinx)dx

2I=π201dx

2I=(x)π20

2I=π20

I=π4

Hence, the value of integral is π4.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon