Consider the given integral.
I=∫π20(11+cotx)dx
I=∫π20⎛⎜ ⎜⎝11+cosxsinx⎞⎟ ⎟⎠dx
I=∫π20(sinxsinx+cosx)dx …….. (1)
We know that
∫baf(x)dx=∫baf(a+b−x)dx
Therefore,
I=∫π20⎛⎜ ⎜ ⎜ ⎜⎝sin(π2−x)sin(π2−x)+cos(π2−x)⎞⎟ ⎟ ⎟ ⎟⎠dx
I=∫π20(cosxcosx+sinx)dx …........(2)
On adding equation (1) and (2), we get
2I=∫π20(cosx+sinxcosx+sinx)dx
2I=∫π201dx
2I=(x)π20
2I=π2−0
I=π4
Hence, the value of integral is π4.