∫π20x2cos2xdx
We have cos2x=2cos2x−1⇒cos2x=1+cos2x2
=∫π20x2(1+cos2x2)dx
=∫π20x2dx+∫π20x2(cos2x2)dx
=12[x33]π20+12∫π20x2cos2xdx
=12[π33×8−0]+12I1
where I1=∫π20x2cos2xdx
Take u=x2⇒du=2xdx and dv=cos2xdx⇒v=sin2x2
⇒I1=∫π20x2cos2xdx
=[x2sin2x2]π20−∫π20sin2x22x.dx
=12[x2sin2x]π20−∫π20xsin2xdx
=12[π24sin2π2]−∫π20xsin2xdx
=0−∫π20xsin2xdx
=−∫π20xsin2xdx
Take u=x⇒du=dx and dv=sin2xdx⇒v=−cos2x2
=−{[−xcos2x2]π20−∫π20−cos2x2dx}
=−π2cosπ2+0
=π4
∴∫π20x2cos2xdx
=12[π33×8−0]+12I1
=π348+12×π4
=π348+π8