The correct option is B 120log3
Let I=∫π40 sinx+cosx9+16sin2xdx
Let sinx−cosx=t
Then, (sinx+cosx)dx=dt
When x=0, t=sin0−cos0=−1
When x=π4, t=sinπ4−cosπ4=0
Then,
I=∫0−1dt9+16(1−t2)=∫0−1dt25−16t2
=110∫0−1(15−4t+15+4t)dt
=∣∣110.14[log(5+4t)−log(5−4t)]∣∣0−1
=140(log9−log1)=120log3