The correct option is B π4
I=∫π/20tan7xcot7x+tan7xdx⟶1
∫baf(x)dx=∫baf(a+b−x)dx
∴I=∫π/20tan7(π2−x)cot7(π2−x)+tan7(π2−x)
I=∫π/20cot7xtan7x+cot7xdx⟶2
Add equations 1 and 2
⟹2I=∫π/20(tan7xtan7x+cot7x+cot7xtan7x+cot7x)
⟹2I=∫π/201⋅dx
⟹2I=|x|π/20
⟹2I=π2
I=π4