The correct option is A −(π2)log2
I=∫π/20log(sinx) dx=∫π/20log(cosx) dx⇒2I=∫π/20log(sinx cosx) dx=∫π/20log(sin2x) dx−∫π/20log(2) dx
=12∫π0log(sint) dt−π2log2 [Putting in first integral 2x=t]=12⋅2∫π/20logsintdt−π2log2 [∵∫2a0f(x)dx=2⋅∫a0f(x)dx if f(2a−x)=f(x)]⇒2I−I=−π2log2⇒I=−π2log2. [∵∫baf(x)dx=∫baf(t)dt]