We have,
∫π20x2cos2xdx∴cos2θ=2cos2θ−1
⇒∫π20x2(1+cos2x)2dx
⇒∫π20x2+x2cos2x2dx
⇒12∫π20x2+12∫π20x2cos2xdx
On integration and we get,
12[x33]0π2+12⎡⎢⎣x2∫π20cos2xdx−∫π20⎛⎜⎝ddxx2∫π20cos2xdx⎞⎟⎠dx⎤⎥⎦
⇒12⎡⎢ ⎢ ⎢⎣π38−033⎤⎥ ⎥ ⎥⎦+12⎡⎢ ⎢⎣{x2(sin2x2)}0π2−∫π20(2x(sin2x2))dx⎤⎥ ⎥⎦
⇒π348+12⎡⎢ ⎢ ⎢ ⎢⎣(π2−0)(sin2×π2−sin0)2⎤⎥ ⎥ ⎥ ⎥⎦−12∫π20(xsin2x)dx
⇒π348+12[(π2)(0−0)2]−12⎡⎢⎣x∫π20sin2xdx−∫π20⎛⎜⎝ddxx∫π20sin2xdx⎞⎟⎠dx⎤⎥⎦
⇒π348+0−12[x(−cos2x2)]0π2+∫π20(−cos2x)2dx
⇒π348−12⎡⎢ ⎢⎣⎧⎪ ⎪⎨⎪ ⎪⎩(π2−0)⎛⎜ ⎜⎝−cos2×π2+cos02⎞⎟ ⎟⎠⎫⎪ ⎪⎬⎪ ⎪⎭⎤⎥ ⎥⎦−12[sin2x2]0π2
⇒π348−12[{(π2)(1+12)}]−12⎡⎢ ⎢⎣sin2×π2−sin02⎤⎥ ⎥⎦
⇒π348−π4−12[0−02]
⇒π348−π4
⇒π4(π212−1)
Hence, this is the answer.