I=∫x/40sinx+cosxcos2x+sin4xdx
=∫x/404(sinx+cosx)2.2cos2x+(2sin2x)2dx
=4∫x/40sinx+cosx2(1+cosx2)(1−cosx2)2dx
=4∫x/40sinx+cosx3+cos22x=4∫x/40sinx+cosx4−sin22xdx
Let sinx−cosx=z⇒(cosx+sinx)dx=dz
and z2=(sinx−cosx)2⇒z2=1−sin2x
Or, sin2x=1−z2
I=4∫x/40sinx+cosx4−sin22xdx
=4∫0−1dz22−(1−z2)2=∫0−14dz(3−z2)(z2+1)
=∫0−1[1z2+1+13−z2]dz
=[tan−1z+12√3log√3+z√3−z]0−1
=0−[tan−1(−1)+12√3log√3−1√3+1]
=π4+12√3log√3+1√3−1
=π4+1√3log√3+1√2Ans