We have,
∫32−1|xsinπx|dx
Applying rule,
∫I.IIdx=I.∫IIdx−∫ddxI∫IIdx
Now,
∫32−1|xsinπx|dx=x∫32−1|sinπx|dx−∫32−1ddxx∫32−1|sinπx|dx
=x[∣∣−cosπxπ∣∣]−132+[∣∣∣sinπxπ∣∣∣]−132
=(32+1)⎛⎜ ⎜ ⎜⎝cos3π2−cos(−π)π⎞⎟ ⎟ ⎟⎠+1π[sin32π−sin(−π)]
=52π[cos(π+π2)−cosπ]+1π[sin(π+π2)+sinπ]∴sin(−θ)=−sinθ,cos(−θ)=cosθ
=52π[−cosπ2−cosπ]+1π[−sinπ2+sinπ]
=52π[−0−(−1)]+1π[−1+0]
=52π[1]−1π
=52π−1π
=5−22π
=32π
Hence, this is the
answer.