wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

3π3πsin2θ.sin22θ dθ is

A
π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3π2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
6π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 3π2
I=3π3πsin2θ.sin22θ dθ
We know that if f is an even function
aaf(x)dx=2a0f(x)dx

I=23π0(sinθ.sin2θ)2 dθ
I=123π0(2sinθ.sin2θ)2 dθ
we know that 2sinA.sinB=cos(AB)cos(A+B)

I=123π0(cosθcos3θ)2 dθ
I=123π0(cos2θ2cos3θcosθ+cos23θ) dθ
Using the formula2cosA.cosB=cos(A+B)+cos(AB), we get
I=123π0(1+cos2θ2(cos4θ+cos2θ)+1+cos6θ2) dθ
I=143π0(2+cos6θ2cos4θcos2θ) dθ
I=14[3π02 dθ+3π0cos6θ dθ3π02cos4θ dθ3π0cos2θ dθ]
I=14[2×(3π0)+(00)2×(00)(00)]
I=6π4=3π2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon