The correct option is C 3π2
I=3π∫−3πsin2θ.sin22θ dθ
We know that if f is an even function
⇒a∫−af(x)dx=2a∫0f(x)dx
I=23π∫0(sinθ.sin2θ)2 dθ
I=123π∫0(2sinθ.sin2θ)2 dθ
we know that 2sinA.sinB=cos(A−B)−cos(A+B)
I=123π∫0(cosθ−cos3θ)2 dθ
I=123π∫0(cos2θ−2cos3θcosθ+cos23θ) dθ
Using the formula2cosA.cosB=cos(A+B)+cos(A−B), we get
I=123π∫0(1+cos2θ2−(cos4θ+cos2θ)+1+cos6θ2) dθ
I=143π∫0(2+cos6θ−2cos4θ−cos2θ) dθ
I=14[3π∫02 dθ+3π∫0cos6θ dθ−3π∫02cos4θ dθ−3π∫0cos2θ dθ]
I=14[2×(3π−0)+(0−0)−2×(0−0)−(0−0)]
I=6π4=3π2