∫x2(xsinx+cosx)2dx
=∫(xsecx)xcosx(xsinx+cosx)2dx
=xsecx.−1xsinx+cosx−∫(secx+xsecxtanx)×(−1xsinx+cosx)dx
=(xsecx)(−1xsinx+cosx)−∫(secx+xsecxtanx)×(−1xsinx+cosx)dx
=−xsecxxsinx+cosx+∫sec2xdx
=−xsecxxsinx+cosx+tanx+c
=−1cosx[xsinx+cosx]+tanx+c
=−x+sin2x(sinx+cosx)cosx[xsinx+cosx]+c
=sinx−xcosxxsinx+cosx+c