It is known that, cosAcosB=12{cos(A+B)+cos(A−B)}
∴∫cos2x(cos4xcos6x)dx=∫cos2x[12{cos(4x+6x)+cos(4x−6x)}]dx
=12∫{cos2xcos10x+cos2xcos(−2x)}dx
=12∫{cos2xcos10x+cos22x}dx
=12∫[{12cos(2x+10x)+cos(2x−10x)}+(1+cos4x2)]dx
=14∫(cos12x+cos8x+1+cos4x)dx
=14[sin12x12+sin8x8+x+sin4x4]+C