We have,
∫1√x(1+x)dx
Let
t=√x
t2=x
dt=12√xdx
dt=12tdx
dx=2tdt
∫1t(1+t2)dx
=∫1t(1+t2)2tdt
=∫1(1+t2)2dt
=2∫11+t2dt
=2tan−1t+C
=2tan−1(√x)+C