∫1x2−1lnx−1x+1dx
Let lnx−1x+1=tdtdx=dln(x−1)(x+1)d(x−1x+1)d(x−1x+1)dx=x+1x−1⎡⎢ ⎢ ⎢⎣(x+1)d(x−1)dx−(x−1)d(x+1)dx(x+1)2⎤⎥ ⎥ ⎥⎦=[x+1−x+1]x2−1=2x2−1dt2=dxx2−1=∫tdt2=t22×2=t24=14[lnx−1x+1]2+C