Let us consider the integral
I1=∫x2+yx4+xdx
I2=∫x2−1x4+1dx
I1=∫x2(1+1x2)x2(x2+1x2)dx=∫(1+1x2)(x2+1x2)dx
let the substitute ⇒x−1x=u so that (1+1x2)dx=du
(x+1x2)=(x−1x)2+2=u2+2
I1=∫1u2+2du=1√2 are tan(u√2)
As u=x−1x=x2−1x
I1=1√2arctan(x2−1√2x)...(1)
I2=∫x2−1x4+1=∫x2(1−1x2)x2(x2+1x2)dx=∫x2−1x2x2+1x2dx
take x+1x=v so that (1−1x2)dx=du
x2+1x2=(x+1x)2−2=v2−2
I2=∫1v2−(√2)2dv=12√2ln∣∣∣v−√2v+√2∣∣∣
Replacing v by x+1x=x2+1x
I2=12√2ln|x2−2√2x+1x2−√2x+1|...(2)
I=∫1x4+1dx=12∫(x2+1)−(x2−1)x4+1dx=12I1−12I2
=12√2arctan(x2−1√2x)−14√2ln|x−√2x+1x−√2x+1|+c