The correct option is C −16,−13,12
We will use partial fractions to solve the integral.
Let 2x−1(x−1)(x+2)(x−3)=Px−1+Qx+2+Rx−3
Then, 2x−1=P(x+2)(x−3)+Q(x−1)(x−3)+R(x−1)(x+2)
Put x=1, we get P=−16
Put x=3, we get R=12
Put x=−2, we get Q=−13
∴∫2x−1(x−1)(x+2)(x−3) dx
=∫(−16(x−1)+−13(x+2)+12(x−3)) dx
=−16log|x−1|+(−13)log|x+2|+12log|x−3|+K
On comparing,
A=−16,B=−13 and C=12