We have,I=∫3x+2(x+1)2(x+2)dx
Let
3x+2(x+1)2(x+2)=Ax+1+B(x+1)2+Cx+2
3x+2=A(x+1)(x+2)+B(x+2)+C(x+1)2
3x+2=A(x2+3x+2)+B(x+2)+C(x2+2x+1) ........(1)
On solving equation (1), we get
A=4,B=−1,C=−4
Therefore,
I=∫4x+1dx−∫1(x+1)2dx−∫4x+2dx
I=4ln(x+1)+1x+1−4ln(x+2)+C
Hence, this is the answer.