Solve
cosx−sinx1+sin2x
=cosx−sinxcos2x+sin2x+2sinxcosx
=cosx−sinx(cosx+sinx)2
On integrating, we get
∫cosx−sinx(cosx+sinx)2dx
Let cosx+sinx=t
Then,}
ddx(cosx+sinx)=ddxt
⇒−sinx+cosx=dtdx
⇒(cosx−sinx)dx=dt
Now,
∫dtt2
=∫t−2dt
=t−2+1−2+1
=−1t=−1cosx+sinx
Hence, this is the answer.