wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

sin6x+cos6xsin2x.cos2xdx

Open in App
Solution

sin6x+cos6xsin2xcos2x

=(sin2x)3+(cos2)3sin2xcos2xdx

(a+b)3=a3+b3+3ab(a+b)

a3+b3=(a+b)33ab(a+b)

(sin2x)3+(cos2)3=(sin2x+cos2x)33sin2xcos2x(sin2x+cos2x)

=133sinxcosx(1)

=13sinxcosx

Therefore,

(sin2x)3+(cos2)3sin2xcos2xdx=(13sin2xcos2xsin2xcos2x)dx

=(1sin2xcos2x3sin2xcos2xsin2xcos2x)dx

=((sin2x+cos2x)sin2xcos2x3)dx

=(sin2xsin2xcos2x+cos2xsin2xcos2x3)dx

=(1cos2x+1sin2x3)dx

=(sec2x+cosec2x3)dx

=sec2xdx+cosec2xdx3dx

=tanxcotx3x+c


Hence, the value of integral is tanxcotx3x+c.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon