I=∫xsin−1x√1−x2dx
Let t=sin−1x
dtdx=1√1−x2
dt=dx√1−x2
Substituting this value,
I=∫sint×t×dx√1−x2
I=∫sint×t dt
Hence, we take
First function : f(x)=t
Second function : g(x)=sint
I=t∫sint dt−∫d(t)dt∫sintdt dt
I=−tcost+∫cost dt
I=−tcost+sint+C
I=x−√1−x2sin−1x+C