Consider the given integral.
I=∫x√x2+a2+√x2−a2dx
I=∫x√x2+a2+√x2−a2×√x2+a2−√x2−a2√x2+a2−√x2−a2dx
I=∫x(√x2+a2−√x2−a2)2a2dx
I=∫x√x2+a22a2dx−∫√x2−a22a2dx
I=I1+I2 ......(1)
Therefore,
I1=∫x√x2+a22a2dx
Put
t=x2+a2
dt=2xdx
Therefore,
I1=14a2∫√tdx
I1=14a2⎛⎜ ⎜ ⎜⎝t3232⎞⎟ ⎟ ⎟⎠+C
I1=16a2(x2+a2)32+C
Similarly,
I2=∫x√x2−a22a2dx
Put
t=x2−a2
dt=2xdx
Therefore,
I2=14a2∫√tdx
I2=14a2⎡⎢ ⎢ ⎢⎣t(32)32⎤⎥ ⎥ ⎥⎦+C
I2=16a2(x2−a2)32+C
Therefore, substituting values if I1 and I2 in equation (1),
I=16a2(x2+a2)32−16a2(x2−a2)32+C
I=16a2⎡⎢⎣(x2+a2)32−(x2−a2)32⎤⎥⎦+C
Hence, this is the value of above integral.