wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

xx2+a2+x2a2dx

Open in App
Solution

Consider the given integral.

I=xx2+a2+x2a2dx

I=xx2+a2+x2a2×x2+a2x2a2x2+a2x2a2dx

I=x(x2+a2x2a2)2a2dx

I=xx2+a22a2dxx2a22a2dx

I=I1+I2 ......(1)


Therefore,

I1=xx2+a22a2dx


Put

t=x2+a2

dt=2xdx


Therefore,

I1=14a2tdx

I1=14a2⎜ ⎜ ⎜t3232⎟ ⎟ ⎟+C

I1=16a2(x2+a2)32+C

Similarly,

I2=xx2a22a2dx


Put

t=x2a2

dt=2xdx


Therefore,

I2=14a2tdx

I2=14a2⎢ ⎢ ⎢t(32)32⎥ ⎥ ⎥+C

I2=16a2(x2a2)32+C


Therefore, substituting values if I1 and I2 in equation (1),

I=16a2(x2+a2)3216a2(x2a2)32+C

I=16a2(x2+a2)32(x2a2)32+C

Hence, this is the value of above integral.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon