The correct option is D √2ex2sinx2+c
Let I=∫ex2sin(x2+π4)dx
=2sin(x2+π4)ex2−∫cos(x2+π4)122ex2dx+c
=2sin(x2+π4)ex2−2ex2cos(x2+π4)−∫sin(x2+π4)122ex2
Therefore, 2I=2ex2{sin(x2+π4)−cos(x2+π4)}
⇒I=ex2{sin(x2+π4)−cos(x2+π4)}=√2ex2(sinx2)=√2ex2sinx2+c.
Trick : By inspection,
ddx{√2ex2sinx2+c}=√2[12ex2cosx2+12ex2sinx2]
=ex2[1√2cosx2+1√2sinx2]=ex2sin(x2+π4).