wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

cos5x+cos4x12cos3xdx

Open in App
Solution

cos5x+cos4x12cos3xdx

To solve this goofy looking integral

cosθ=2cos2θ21cosA+cosB=2cos(A+B2)cos(AB2)cos5x+cos4x12cos3xdx=2cos(5x+4x2)cos(5x4x2)12[2cos2(3x2)1]dx=2cos(9x2)cos(x2)34cos2(3x2)dx

Multiply and divide by

2cos(9x2)cos(x2)34cos2(3x2)×cos(3x2)cos(3x2)dx=2cos(9x2)cos(x2)cos(3x2)3cos(3x2)4cos2(3x2)dx=2cos(9x2)cos(x2)cos(3x2)cos(3×3x2)dx=2cos(9x2)cos(x2)cos(3x2)cos(9x2)dx=2cos(x2)cos(3x2)dx=(cos2x+cosx)dx=cos2xdxcosxdx=sin2x2sinx+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon