∫cos5x+cos4x1−2cos3xdx
To solve this goofy looking integral
cosθ=2cos2θ2−1cosA+cosB=2cos(A+B2)cos(A−B2)∫cos5x+cos4x1−2cos3xdx=∫2cos(5x+4x2)cos(5x−4x2)1−2[2cos2(3x2)−1]dx=∫2cos(9x2)cos(x2)3−4cos2(3x2)dx
Multiply and divide by
∫2cos(9x2)cos(x2)3−4cos2(3x2)×cos(3x2)cos(3x2)dx=∫2cos(9x2)cos(x2)cos(3x2)3cos(3x2)−4cos2(3x2)dx=−∫2cos(9x2)cos(x2)cos(3x2)cos(3×3x2)dx=−∫2cos(9x2)cos(x2)cos(3x2)cos(9x2)dx=−∫2cos(x2)cos(3x2)dx=−∫(cos2x+cosx)dx=−−∫cos2xdx−∫cosxdx=−sin2x2−sinx+C