∫cos7x−cos8x1+2cos5x=−∫cos8x−cos7x2cos(5x)+1
Simplify using trigonometric/hyperbolic identies:-
→∫(cos(3x)−cos(2x))dx
⇒ Put 3x=u→dx=13du
Put 2x=v→dv=12du
=13∫cosudu−12∫cosvdv
=sinu3−12sinv+c
=sin(3x)3−12sin(2x)+c
⇒−∫cos8x−cos7x2cos(5x)+1=sin(3x)3−sin(2x)2
⇒∫cos7x−cos8x1+2cos(5x)=sin(2x)2−sin(3x)3+c.