∫ex(x−1)(x−ln x)x2dx is equal to
ex(x−ln xx)+c
ex(x−ln x+1x)+c
ex(x−ln xx2)+c
ex(x−ln x−1x)+c
∫ex(x−1)(x−ln x)x2dx
=∫ex(1x−1x2)(lnexx)dx
=∫lnexxd(exx)
=ln(exx)exx−exx+c
=exx(x−ln x−1)+c
∫x+3x+42ex dx= (a) exx+4+C (b) exx+3+C (c) 1x+42+C (d) exx+42+C
∫ex(1−cotxsinx)dx
Solution of differential equation dydx+tanyx=xexsecy is