Given,I=∫ln(x−1x+1)x2−1dxIntegrationofln(x−1x+1)=t,differentiationbothsideis,(∴fromquestiontool=uv=u′v−uv′v2)1x−1x+1(1(x+1)−(x−1)(x+1)2)(x+1x−1)(1(x+1)−(x−1)(x+1)2)dx=dt1x−1(2(x+1))dx=dtdxx2−1=12dtNow,I=12∫t⋅dt=12(t22)+c∴14(ln(x−1)x+1)2+csothatthecorectAnsweeris14(ln(x−1)x+1)2+c