Expand:
=∫(ln2(x)ln4(x)+2 ln2(x)+1−2 ln(x)ln4(x)+2 ln2(x)+1+1ln4(x)+2 ln2(x)+1)dx
Apply linearity:
=∫ln2(x)ln4(x)+2 ln2(x)+1dx−2∫ln(x)ln4(x)+2 ln2(x)+1dx+∫1ln4(x)+2 ln2(x)+1dx
Now solving:
∫ln2(x)ln4(x)+2 ln2(x)+1dxSubstituteu=ln(x)→dudx=1xusex=eu,ln2(x)=u2,ln4(x)=u4=∫u2euu4+2u2+1du
Factor the denominator:
=∫u2eu(u−i)(u+i)2du=∫u2eu(u−i)2(u+i)2du
Perform partial fraction decomposition:
=∫(ieu4(u+i)+eu4(u+i)2−ieu4(u−i)+eu4(u−i)2)du
Apply linearity:
=i4∫euu+idu−14∫eu(u+i)2du−i4∫euu−idu−14∫eu(u−i)2du
Now solving:
∫euu+idu
Use previous result:
=e−iEi(u+i)
Now solving:
∫eu(u+i)2du
Use previous result:
=e−iEi(u+i)−euu+ii4∫euu+idu−14∫eu(u+i)2du−i4∫euu−idu−14∫eu(u−i)2du=ie−iEi(u+i)4−e−iEi(u+i)4−eiiEi(u−i)4−eiEi(u−i)4+eu4(u+i)+eu4(u−i)
Undo substitution u=ln(x), use eln(x)=x:
ie−iEi(ln(x)+i)4−e−iEi(ln(x)+i)4−eiiEi(ln(x)−i)4−eiEi(ln(x)−i)4+x4(ln(x)+i)
Plug in solved integrals:
∫ln2(x)ln4(x)+2 ln2(x)+1dx−2∫ln(x)ln4(x)+2 ln2(x)+1dx+∫1ln4(x)+2 ln2(x)+1dx=ix2(ln(x)+i)−ix2(ln(x)−i)
The problem is solved:
∫(ln(x)−1)2(ln2(x)+1)2dx=ix2(ln(x)+i)−ix2(ln(x)−i)+C
Rewrite/simplify:
=xln2(x)+1+C