wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(ln(x)1)2(ln2(x)+1)2dx

Open in App
Solution

Expand:
=(ln2(x)ln4(x)+2 ln2(x)+12 ln(x)ln4(x)+2 ln2(x)+1+1ln4(x)+2 ln2(x)+1)dx
Apply linearity:
=ln2(x)ln4(x)+2 ln2(x)+1dx2ln(x)ln4(x)+2 ln2(x)+1dx+1ln4(x)+2 ln2(x)+1dx
Now solving:
ln2(x)ln4(x)+2 ln2(x)+1dxSubstituteu=ln(x)dudx=1xusex=eu,ln2(x)=u2,ln4(x)=u4=u2euu4+2u2+1du
Factor the denominator:
=u2eu(ui)(u+i)2du=u2eu(ui)2(u+i)2du
Perform partial fraction decomposition:
=(ieu4(u+i)+eu4(u+i)2ieu4(ui)+eu4(ui)2)du
Apply linearity:
=i4euu+idu14eu(u+i)2dui4euuidu14eu(ui)2du
Now solving:
euu+idu
Use previous result:
=eiEi(u+i)
Now solving:
eu(u+i)2du
Use previous result:
=eiEi(u+i)euu+ii4euu+idu14eu(u+i)2dui4euuidu14eu(ui)2du=ieiEi(u+i)4eiEi(u+i)4eiiEi(ui)4eiEi(ui)4+eu4(u+i)+eu4(ui)
Undo substitution u=ln(x), use eln(x)=x:
ieiEi(ln(x)+i)4eiEi(ln(x)+i)4eiiEi(ln(x)i)4eiEi(ln(x)i)4+x4(ln(x)+i)
Plug in solved integrals:
ln2(x)ln4(x)+2 ln2(x)+1dx2ln(x)ln4(x)+2 ln2(x)+1dx+1ln4(x)+2 ln2(x)+1dx=ix2(ln(x)+i)ix2(ln(x)i)
The problem is solved:
(ln(x)1)2(ln2(x)+1)2dx=ix2(ln(x)+i)ix2(ln(x)i)+C
Rewrite/simplify:
=xln2(x)+1+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
The Pinhole Camera
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon