wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

ππ2ex(1sinx1cosx)dx

Open in App
Solution

ππ/2ex(1sinx1cosx)dx
Let I=ex(1sinx1cosx)dx
or I=ex12sinx2cosx22sin2x2dx
or, I=ex⎢ ⎢csc2x22cotx2⎥ ⎥dx
Let f(x)=cot(x2)
f(x)=csc2x22
or, I=ex[f(x)+f(x)]dx
or, I=exf(x)dxddx(ex)(f(x)dx)dx+exf(x)dx
I=exf(x)exf(x)dx+exf(x)dx
I=exf(x)+c
I=excot(x2)+c
=ππ/2ex(1sinx1cosx)dx
=[excotx2]π/2
=eπ.0+eπ/2cotπ4
=eπ/2
Hence, the answer is eπ/2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon