∫ππ/2ex(1−sinx1−cosx)dx
Let I=∫ex(1−sinx1−cosx)dx
or I=∫ex1−2sinx2cosx22sin2x2dx
or, I=∫ex⎡⎢
⎢⎣csc2x22−cotx2⎤⎥
⎥⎦dx
Let f(x)=−cot(x2)
⇒f′(x)=csc2x22
or, I=∫ex[f′(x)+f(x)]dx
or, I=ex∫f′(x)dx−∫ddx(ex)(f′(x)dx)dx+∫exf(x)dx
⇒I=exf(x)−∫exf(x)dx+∫exf(x)dx
⇒I=exf(x)+c
⇒I=−excot(x2)+c
=∫ππ/2ex(1−sinx1−cosx)dx
=[−excotx2]π/2
=−eπ.0+−eπ/2cotπ4
=eπ/2
Hence, the answer is eπ/2.