wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

sin1xcos1xsin1x+cos1x dx.

Open in App
Solution

Let I=sin1xcos1xsin1x+cos1x dxWe know that sin1x+cos1x=π2 cos1x=π2sin1x I=sin1x(π2sin1x)π2dx=2 sin1xπxπ2dx=2π(2 sin1xπ2)dx=4πsin1x dx1 dx=4πsin1x dxx I=4πI1x+Cwhere, I1=sin1x dxput x=t x=t2dx=2t dtI1=sin1t 2t dt=2sin1It.tII dt=2[sin1t.t2211t2.t22 dt][Using intergration by part I,uv dx=uv dx(ddxuv dx)dx]=t2sin1t21t2dt=t2sin1t(1t2)+11t2dt=t2sin1t+1t2dt11t2dt=t2sin1t+t1t22+12sin1tsin1t=(t212)sin1t+12t1t2=12[(2x1)sin1x+x1x]=12[(2x1)sin1x+xx2]On putting the value of I1 in Eq. (i),we getsin1xcos1xsin1x+cos1x dx=2π[(2x1)sin1x+xx2]x+C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon