∫sin−1√x−cos−1√xsin−1√x+cos−1√x dx.
Let I=∫sin−1√x−cos−1√xsin−1√x+cos−1√x dxWe know that sin−1√x+cos−1√x=π2⇒ cos−1√x=π2−sin−1√x∴ I=∫sin−1√x−(π2−sin−1√x)π2dx=∫2 sin−1√x−πxπ2dx=2π∫(2 sin−1√x−π2)dx=4π∫sin−1√x dx−∫1 dx=4π∫sin−1√x dx−x⇒ I=4πI1−x+Cwhere, I1=∫sin−1√x dxput √x=t⇒ x=t2⇒dx=2t dtI1=∫sin−1t 2t dt=2∫sin−1It.tII dt=2[sin−1t.t22−∫1√1−t2.t22 dt][Using intergration by part I,∫uv dx=u∫v dx−∫(ddxu∫v dx)dx]=t2sin−1−∫t2√1−t2dt=t2sin−1t−∫−(1−t2)+1√1−t2dt=t2sin−1t+∫√1−t2dt−∫1√1−t2dt=t2sin−1t+t√1−t22+12sin−1t−sin−1t=(t2−12)sin−1t+12t√1−t2=12[(2x−1)sin−1√x+√x√1−x]=12[(2x−1)sin−1√x+√x−x2]On putting the value of I1 in Eq. (i),we get∫sin−1√x−cos−1√xsin−1√x+cos−1√x dx=2π[(2x−1)sin−1√x+√x−x2]−x+C