∫sin−1x(1−x2)32dx
Let u=sin−1x
du=1(−1x2)dx
=sin1x√1−x2−∫x1−x2dx+C ..... (1)
=∫x1−x2dx=−12log|1−x2|
=∫x1−x2dx
Let w=1−x2
dw=−2xdx
=12∫−2x1−x2dx=−12∫dww=−12log|w|
=−12log|1−x2|
Now putting this value in eq (1) we get
=sin−1x√1−x2−(−12log|1−x2|)
=sin−1x√1−x2+12log|1−x2|+C