∫x1/21+x3/4dx
I=I1−I2I1=4∫t2dt=4.t33+C1=43x3/4+C1Now,I2=4∫t21+t3dtAgain,put1+t3=Z⇒3t2dt=dz⇒t2dt=13dz=43∫1zdz=43log|Z|+C2=43log|(1+t3)|−C2=43x3/4−log|(1+x3/4)+C [∴C=C1−C2]