wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

x2(x2+a2)(x2+b2)dx=

Open in App
Solution

Let I = x2(x2+a2)(x2+b2)dxNow,x2(x2+a2)(x2+b2) [let x2=t]=t(t+a2)(t+b2)=A(t+a2)+B(t+b2)t=A(t+b2)+B(t+a2)On comparing the coefficients of t, we get.A+B=1b2A+a2B=0A+B=1b2A+a2B=0b(1B)+a2B=0b2b2B+a2B=0b2+(a2b2)B=0B=b2a2b2=b2b2a2FromEq.(i). A+b2b2a2=1A=b2a2b2b2a2=a2b2a2=a2(b2a2)1x2+a2dx+b2b2a21x2+b2dx=a2b2a2.1atan1xa+b2b2a2.1btan1xb=1b2a2[a tan1xa+b tan1xb]=1b2a2[a tan1xab tan1xb]


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon