∫x2(x2+a2)(x2+b2)dx=
Let I = ∫x2(x2+a2)(x2+b2)dxNow,x2(x2+a2)(x2+b2) [let x2=t]=t(t+a2)(t+b2)=A(t+a2)+B(t+b2)t=A(t+b2)+B(t+a2)On comparing the coefficients of t, we get.A+B=1b2A+a2B=0A+B=1b2A+a2B=0⇒b(1−B)+a2B=0⇒b2−b2B+a2B=0⇒b2+(a2−b2)B=0⇒B=−b2a2−b2=b2b2−a2FromEq.(i). A+b2b2−a2=1⇒A=b2−a2−b2b2−a2=−a2b2−a2=−a2(b2−a2)∫1x2+a2dx+b2b2−a2∫1x2+b2dx=−a2b2−a2.1atan−1xa+b2b2−a2.1btan−1xb=1b2−a2[−a tan−1xa+b tan−1xb]=1b2−a2[a tan−1xa−b tan−1xb]