∫x√x+1dx
Let I = ∫x√x+1dxPut√x=t⇒12√xdx=dt⇒dx=2√xdt∴ I=2∫(x√xt+1)dt=2∫t2.tt+1dt=2∫t3t+1dt=2∫t3+1−1t+1dt=2∫(t+1)(t2−t+1)t+1dt−2∫1t+1dt=2∫(t2−t+1)dt−2∫1t+1dt=2[t33−t22+t−log|(t+1)|]+C=2[x√x3−x2+√x−log|(√x+1)|]+C