I=∫(3x−2)√x2+x+1dxI=∫[32(2x+1)−72]√x2+x+1dxI=∫32(2x+1)√x2+x+1dx−∫72√x2+x+1dxSolving,∫32(2x+1)√x2+x+1dxLet,x2+x+1=u2x+1=du∫32(2x+1)√x2+x+1dx=32∫√udu=32.2u3/23=u3/2=(x2+x+1)3/2Solving,−∫72√x2+x+1dx−∫72√x2+x+1dx=−∫72√(x2+12)2+34dxLet,2x+1=udx=du2−∫72√(x2+12)2+34dx=−72∫√u2+1du=−72[32ln√u23+1+u√3]+⎡⎢⎣3√u√u23+12⎤⎥⎦I=(x2+x+1)3/2−72[32ln√(2x+1)23+1+(2x+1)√3]+⎡⎢⎣3√(2x+1)√(2x+1)23+12⎤⎥⎦+C