wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(3x2)x2+x+1dx=

Open in App
Solution

I=(3x2)x2+x+1dxI=[32(2x+1)72]x2+x+1dxI=32(2x+1)x2+x+1dx72x2+x+1dxSolving,32(2x+1)x2+x+1dxLet,x2+x+1=u2x+1=du32(2x+1)x2+x+1dx=32udu=32.2u3/23=u3/2=(x2+x+1)3/2Solving,72x2+x+1dx72x2+x+1dx=72(x2+12)2+34dxLet,2x+1=udx=du272(x2+12)2+34dx=72u2+1du=72[32lnu23+1+u3]+3uu23+12I=(x2+x+1)3/272[32ln(2x+1)23+1+(2x+1)3]+3(2x+1)(2x+1)23+12+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon