The correct option is A x(sin−1x)2+2(sin−1x)√1−x2−2x+C.
Wehave∫(sin−1x)2dxputtingx=sintanddx=costdtnow,weget∫(sin−1x)2dx=∫t2costdt=t2.sin(t)−∫2t(sint)dt=t2sint−2[t(−cost)−∫1.(−cost)dt]=t2sint+2tcost−2sint+C=x(sin−1x)2+2(sin−1x)√1−x2−2x+C.Hence,theoptionAiscorrect.