wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π0x tan xsec x+tan xdx.

Open in App
Solution

Let I=π0x tan xsec x+tan xdx ...(i)
I=π0(πx)tan(πx)sec(πx)+tan(πx)dx[a0f(x)dx=a0f(ax)dx]I=π0(πx)tan xsec x+tan xdx ...(ii)
[tan(πx)=tan x and sec(πx)=sec x]
On adding Eqs. (i) and (ii), we get
2I=π0π tan xsec x+tan xdx=ππ0π tan xsec x+tan xdx=ππ0sin xcos x1cos x+sin xcos xdx=ππ0sin x1+sin xdx
=ππ0sin x(1sin x)(1+sin x)(1sin x)dx=ππ0sin x(1sin x)1sin2xdx
(sin2x+cos2x=1)
=ππ0sin xsin2xcos2xdx=ππ0(sin xcos2sin2xcos2x)dx
=ππ0(sec x tan xtan2x)dx
=ππ0{sec x tan x(sec2x1)}dx [1+tan2x=sec2x]
=π[sec xtan x+x]π0
=π{sec πtan π+π(sec 0tan 0+0)}=π(1+π1)I=π2(π2)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon