∫π0x tan xsec x+tan xdx.
Let I=∫π0x tan xsec x+tan xdx ...(i)
⇒I=∫π0(π−x)tan(π−x)sec(π−x)+tan(π−x)dx[∵∫a0f(x)dx=∫a0f(a−x)dx]⇒I=∫π0(π−x)tan xsec x+tan xdx ...(ii)
[∵tan(π−x)=−tan x and sec(π−x)=−sec x]
On adding Eqs. (i) and (ii), we get
2I=∫π0π tan xsec x+tan xdx=π∫π0π tan xsec x+tan xdx=π∫π0sin xcos x1cos x+sin xcos xdx=π∫π0sin x1+sin xdx
=π∫π0sin x(1−sin x)(1+sin x)(1−sin x)dx=π∫π0sin x(1−sin x)1−sin2xdx
(∵sin2x+cos2x=1)
=π∫π0sin x−sin2xcos2xdx=π∫π0(sin xcos2−sin2xcos2x)dx
=π∫π0(sec x tan x−tan2x)dx
=π∫π0{sec x tan x−(sec2x−1)}dx [∵1+tan2x=sec2x]
=π[sec x−tan x+x]π0
=π{sec π−tan π+π−(sec 0−tan 0+0)}=π(−1+π−1)∴I=π2(π−2)