Consider the following question.
I=∫π2−π2sinx√1−cos2xdx
=∫0−π2sinx√1−cos2xdx+∫π20sinx√1−cos2xdx
case.1
t=−cosx
x=−π2,0
t=(0,1)
case.2)x=(π2,0)
t=(1,0)
dtsinx=dx
I=∫0−π2(−cosx)√1−t2dtcosx
=−(∫0−π2√1−t2dt+∫π20√1−t2dt)
=−(((12√1−t2)−12ln(1+√1−t2))0−1+((12√1−t2)−12ln(1+√1−t2))10)
=−(12((sinx)−ln(1+sinx))0−π2+12((sinx)−ln(1+sinx))π20)+C
=−(12(0−1)+12(1−ln2−0))
=12ln2
Hence, this is the required answer.
..
.