∫π/2π/3√1+cos x(1−cosx)5/2dx
∫π/2π/3√1+cos x(1−cosx)5/2dxLet I=∫π/2π/3√1+cos x(1−cosx)5/2dx=∫π/2π/3√1+cosx(1−cosx)2√1+cosxdx=∫π/2π/31(1−cos2x)dx==∫π/2π/31sin2xdx=∫π/2π/3cosec2xdx=[−cotx]π/2π/3=−[cotπ2−cotπ3]=−[0−1√3]=+1√3AlternateMethodLetI=∫π/2π/3√1+cosx(1−cosx)5/2dx=∫π/2π/3(2cos2x2)1/2(2sin2x2)5/2dx=√24√2=∫π/2π/3cos(x2)sin5(x2)dx=14∫π/2π/3cos(x2)sin5(x2)dxPutsinx2=t⇒cosx2.12dx=dt⇒cosx2dx=2dtAsx→π3,thent→12andx→π2,thent→1√2∴I=24∫1√21/2dtt5=12[t−5+1−5+1]1/√21/2=−18⎡⎢ ⎢⎣1(1√2)4−1(12)4⎤⎥ ⎥⎦=−18(4−16)=128=32
Note If we integrate the trigonometric function in different ways [using different identities] then, we can get different answers.