I=∫(π3)(π4)(tanx+cotx)2dx=∫(π3)(π4)(tan2x+cot2x+2tanxcotx)dx=∫(π3)(π4)(tan2x+cot2x+2)dx=∫(π3)(π4)[(sec2x−1+cosec2−1)+2]dx=[tanx−cotx]π/3π/6=(tan(π3)−cot(π3))−(tan(π6)−cot(π6))=(√3−(1√3))−((1√3)−√3)=2(√3−(1√3))=2((3−1√3))=(4√3)