wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

ππ2x(1+sin x)1+cos2x

Open in App
Solution

=ππ2x(1+sin x)1+cos2xdxππ2x)1+cos2xdx+2x sin x1+cos2xdx=ππf1(x)dx+ππf2(x)dx
f1(x) is an odd function, because f1(x)=f1(x)
ππf1(x)dx=0f2(x)=2(x).sin(x)1+cos2(x)=2x sin x1+cos2x=f2(x)
f2(x) is an even function
ππf1(x)dx=2ππf2(x)dx
2π02xsin x1+cosxd)
Put cosx=tsinxdx=dt
x=0t=1x=πf=1=411dt1+t2=411dt1+t2=4[tan1t]2=4[π4(π4)]=4π2=2πI=ππ2x(1+sin x)1+cos2xdx=2π

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon