=∫π−π2x(1+sin x)1+cos2xdx∫π−π2x)1+cos2xdx+2x sin x1+cos2xdx=∫π−πf1(x)dx+∫π−πf2(x)dx
f1(x) is an odd function, because f1(−x)=−f1(x)
∴∫π−πf1(x)dx=0f2(−x)=2(−x).sin(−x)1+cos2(−x)=2x sin x1+cos2x=f2(x)
∴f2(x) is an even function
∫π−πf1(x)dx=2∫π−πf2(x)dx
2∫π02xsin x1+cosxd)
Put cosx=tsinxdx=dt
x=0t=1x=πf=−1=4∫−11dt1+t2=4∫−11dt1+t2=−4[tan−1t]2=−4[π4−(−π4)]=4π2=2π∴I=∫ππ2x(1+sin x)1+cos2xdx=2π